
1

Interactive Embedded Systems
Learning using the Prairie Learn

Framework
DESIGN DOCUMENT

Team Number: 33

Client: Phillip Jones

Advisor: Phillip Jones

Notetaker: Rachel Druce-Hoffman

Technical Lead: Justin Cano

Quality Assurance: Joey Krejchi

Project Manager: Caden Otis

Consultant: Devin Alamsya

Team Email: sdmay25-33@iastate.edu

Team Website: https://sdmay25-33.sd.ece.iastate.edu

Revised: 05/04/2025

mailto:sdmay25-33@iastate.edu
https://sdmay25-33.sd.ece.iastate.edu

2

Executive Summary
Our project came from a need to minimize instructor grading time in the course CPRE 2880, while
maximizing student success. It uses the open source PrairieLearn framework (PL) to provide the
structure for a homework solution, including course sections, assignments, homework questions,
and options on calculating grades. The CPRE 2880 PrairieLearn project has been in development for
three years total by three senior design teams. Each group has made strides in understanding how
to set up PrairieLearn to work in the Iowa State environment and translating assignments, which
are currently given to students in Word document form, into PrairieLearn questions.

Our client required the use of the PrairieLearn framework to implement the 12 current homework
assignments used in lectures as questions, each consisting of Python, C, and HTML code. These
questions span the material of CPRE 2880, including GPIO, UART, ARM assembly language, and
more. We were required to have as many questions to be graded automatically, without the need for
instructor review. Questions were to be broken into component parameters that can be randomized
so that students can have “infinite” question variants generated to practice concepts.

The design of this solution centers around PrairieLearn’s functionality and compatibility. The
course must have a corresponding Git repository, which houses the code, test files, and
configuration files for each question and assignment. We have received a Linux machine from Iowa
State’s ETG which acts as the PL server for this course. Students will be able to access the server
through a URL with their email and complete assigned homeworks on the website. We integrated
PrairieLearn with the Canvas API to allow grades to auto populate in the gradebook, and with ISU’s
SSO to provide secure and efficient logins.

Since we are continuing on a project that previous teams have worked on, we iterated on the
previous group’s design. Their design didn’t randomize and/or autograde every question when
possible, so we added that to every problem (as much as possible) in our design. There are a total of
12 homework sets, which we worked on in two batches of six. Our previous plan (as of the fall
semester) was to deploy the first 6 homework sets in a beta test with current CPRE 2880 students
for this semester. That did not come to fruition as we hoped, but this semester’s 2880 professor (Dr.
Diane Rover) is testing our platform and is distributing it to the course’s teaching assistants as part
of an Alpha test.

Weekly meetings with our client, the primary professor user, have ensured us that we are staying
aligned with their requirements and expectations for this project. These meetings have confirmed
that the current progress meets the client’s goals. While the impact on student success hasn’t been
tested yet, the Beta version we plan to be released in the fall 2025 semester will provide critical
feedback to evaluate how well our project assists student learning.

The final deliverable of our project consists of nine homework sets, from which every problem is
fully autograded, randomizable, and thoroughly tested to ensure it is bug free. We have also created
documentation (written and video) to document everything that we learned and have accomplished
for this project, hoping to make the onboarding process for the next team as seamless as possible.
Our application is ready for future senior design students to take the Beta test in the upcoming
school year.

3

Learning Summary

Development Standards & Practices Used
●​ ISO/IEC/IEEE 14764:2022, Software Life Cycle Processes - Maintenance

●​ ISO/IEC/IEEE 42010:2022, Software, Systems, and Enterprise - Architecture
Description

●​ ISO/IEC 27001:2022, Information security, cybersecurity and privacy
protection

Summary of Requirements

Requirements that our senior design project must have are:

●​ All existing CPRE 2880 homeworks implemented

●​ Questions that are engaging and interactive

●​ Questions that can be randomized for unlimited practice

●​ Questions that are autogradable, providing student with quick and specific
feedback

●​ Makes learning difficult CPRE 2880 concepts easier

●​ Is free for students and professors to use

●​ Documentation that can teach TAs and future developers how to use and
continue developing our project

●​ Save CPRE 2880 professors and TAs time on grading assignments to focus
on other areas within the course

Applicable Courses from Iowa State University Curriculum
The courses that have helped us brainstorm and develop our project are:

4

●​ CPRE 2880: Since our project is ultimately to make learning easier for CPRE
2880 students, a lot of what we learned from CPRE 2880 is applied to make
questions that cover the main concepts from the course and also make the
most sense for students. We also need to understand how to get the
solutions to the questions we make so that we can create the autograding
capabilities for most questions.

●​ CPRE 3090: This course taught software development practices that are
useful for a project like this. Our team is using GitLab for source control and
planning tasks, which we learned how to use in 3090.

●​ ENGL 3140: The technical writing class is very applicable to a senior design
project because of all the documentation involved. It is important to know
how to explain technical ideas clearly in writing so that one who reads your
writing can understand what you are talking about. A large part of our
project is documentation (such as this document) so our ENGL 3140
knowledge has been very useful.

●​ EE 2850: This course taught basic software development using the C
programming language, such as the different variable types, method
declarations, pointers, structs, and even some recursive algorithms. Our
project uses a lot of these basic components of C to create software that can
calculate the correct solutions for problems existing in our project.

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your
Going into this project, the skills/knowledge that the team acquired are:

●​ Using and developing in the PrairieLearn Framework

●​ Programming in Python

●​ Using ISU SSO and Google OAuth for authentication

●​ Setting up a server

●​ Programming with Canvas API

5

Table of Contents
1.​ Introduction​ 8

1.1 Problem Statement​ 8

1.2 Intended Users​ 8

2.​ Requirements, Constraints, And Standards​ 10

2.1 Requirements & Constraints​ 10

2.2 Engineering Standards​ 10

2.2.1 Importance​ 10

2.2.2 Standards And Descriptions​ 10

2.2.3 Relevance​ 11

2.2.4 Additional Standards​ 12

2.2.5 Modifications and Incorporation​ 12

3 Project Plan​ 13

3.1 Project Management/Tracking Procedures​ 13

3.2 Task Decomposition​ 13

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria​ 14

3.4 Project Timeline/Schedule​ 14

3.5 Risks and Risk Management/Mitigation​ 15

3.6 Personnel Effort Requirements​ 20

3.7 Other Resource Requirements​ 22

4 Design​ 23

4.1 Design Context​ 23

4.1.1 Broader Context​ 23

4.1.2 Prior Work/Solutions​ 24

4.1.3 Technical Complexity​ 24

4.2 Design Exploration​ 25

4.2.1 Design Decisions​ 25

4.2.2 Ideation​ 25

4.2.3 Decision-Making and Trade-Off​ 26

4.3 Final Design​ 28

4.3.1 Overview​ 28

4.3.2 Detailed Design and Visual(s)​ 29

6

4.3.3 Functionality​ 30

4.3.4 Areas of Challenge​ 30

4.4 Technology Considerations​ 30

5 Testing​ 31

5.1 Unit Testing​ 31

5.2 Interface Testing​ 32

5.3 Integration Testing​ 32

5.4 System Testing​ 32

5.5 Regression Testing​ 32

5.6 Acceptance Testing​ 33

5.7 User Testing​ 33

5.9 Results​ 33

6 Implementation​ 35

6.1 Design Analysis​ 35

7 Ethics and Professional Responsibility​ 35

7.1 Areas of Professional Responsibility/Codes of Ethics​ 36

7.2 Four Principles​ 38

7.3 Virtues​ 39

8 Conclusions​ 42

8.1 Summary of Progress​ 42

8.2 Value Provided​ 43

8.3 Next Steps​ 43

9 References​ 43

10 Appendices​ 44

Appendix 1 – Operation Manual​ 44

Appendix 2 – Alternative/initial version of design​ 44​

Appendix 3 – Code​ 44

Appendix 4 – Team Contract​ 45

7

List of Figures

Figure 1: Task Decomposition Diagram

Figure 2: Fall 2024 Gantt Chart

Figure 3: Spring 2025 Gantt Chart

Figure 4: Block diagram of PrairieLearn components

Figure 5: Journey Map describing student use of PrairieLearn

Figure 6: Old problem that has no autograding or randomization

Figure 7: Improved problem that uses autograding

List of Tables

Table 1: Estimated Effort Requirements

Table 2: Actual Effort Requirements

Table 3: Areas of Responsibility

Table 4: Four principles and broader context relations

8

1.​ Introduction

1.1 PROBLEM STATEMENT

The current way that students in CPRE 2880 learn and engage with concepts presents several
challenges that hinder effective learning. One of the main challenges that students face is not
getting enough practice of the material due to limited opportunities and resources provided. The
students may receive very little feedback on homework submissions due to the TAs not having
enough time to provide meaningful feedback for every student in the course. This causes students
to be left questioning what they did wrong, preventing any sort of improvement and understanding.
When students would like to seek out the professor or TAs to get feedback or to learn more about
concepts they don’t understand, they are met with limited office hours and other students
competing for instructor attention. Additionally, there is limited lab seating and microcontrollers
(Cybots) for the students to practice programming, further impeding hands-on learning.

Department faculty is committed to improving the student experience. Instructors have limited
time, but it is not due to lack of caring. Professors must balance classes, research, and more, while
TAs fit their responsibilities between their own classes. The obstacles the students face are not as
simple as poor curriculum or instruction. For many classes, especially these large core classes, there
are simply too many students for current teaching methods. Some students will slip through the
cracks in these technical courses, but the CPRE 2880 professors are looking to minimize that as
much as possible. These obstacles are not unique to this course either; throughout the department
and even the whole campus, there are professors aiming to improve student understanding. There
are some tools already commonly used, but each has its own flaws and many fall short in technical
classes. What is needed is the adoption of a new technology, infinitely customizable, and infinitely
randomizable to generate instructor-approved questions for students.

From all of the challenges that students face during their time in CPRE 2880 (and similar courses),
it is clear that students need a way to access learning opportunities whenever they want that will
provide feedback based on their mistakes. An effective solution would ensure that students can
learn at their own pace and receive instant feedback to guide their progress. Additionally, professors
and TAs need a way to significantly reduce their time spent on writing questions or grading
homework and exams so that they can focus on teaching and offering personalized support to their
students. By optimizing these aspects, both students and educators can benefit from a more
efficient and effective learning environment.

1.2 INTENDED USERS

The product that we’ve created is for the benefit of making the CPRE 2880 course easier to learn
and manage. The main users of our product will be the students, professors, and teaching assistants
in CPRE 2880. Each user of our product has their own unique expectations for the course, and we
have made sure to incorporate each of their needs to ensure every user will be satisfied with our
product.

The students of CPRE 2880 are usually sophomores who have little to no experience with embedded
systems and embedded programming. Depending on their major, they may have never done any
type of programming before. They will also experience different types of emotions throughout their
time in the course, like feeling frustrated or overwhelmed with some of the more difficult topics

9

taught in the course. We assume that they want to take CPRE 2880 to learn the basics of embedded
systems and aim to do well in the course. In order for them to get a satisfactory grade in the course
and have a solid understanding of the concepts taught, they will need specific and quick feedback
on assignments. This is imperative for students to learn from their mistakes and improve their
knowledge. To improve their learning of concepts that they don’t fully understand, they will need
access to questions that are engaging and interactive. Furthermore, they need questions that can be
randomized for unlimited practice. With our product, students will get access to questions that
offer much more interaction than what they currently get from their homeworks. Interactive
questions will be more effective at capturing student attention, and making sure even unmotivated
students engage with the material. Each question hosted from our product will also allow students
to create unlimited variants for every question, allowing them to practice difficult questions as
many times as they would like. Overall, our product will enhance students’ learning in CPRE 2880.

For the professors of CPRE 2880, they are often busy juggling different things, such as their
research, multiple classes, and their personal life. These responsibilities make it hard for professors
to spend more time explaining difficult concepts and having one-on-one time with students.
However, professors want their course to be successful and their students to grasp every concept
taught. To help professors multitask, they need homework and quiz questions to have an autograde
function to save them time on grading. They also need a way to make concepts easier to understand
for their students. This improvement of teaching material will lead to excellent student
performance in their course. To help students learn concepts at their own pace, professors also need
to provide students with questions that can be randomized. Instead of a static set of questions,
students are able to practice until they are satisfied with their grade and their understanding. With
our product, we will provide professors with the tools they need to make their course more
successful for students.

The TA’s for CPRE 2880 are typically juniors, seniors, and graduate students majoring in a similar
field and have experience with embedded systems. They are most likely very busy with other
schoolwork and research, and depending on their status, undergraduate TAs are only allowed to
work 10 hours a week while graduate students are allowed 20 per week. This means they have
limited time to help students and grade assignments, which is why they need a way to spend less
time grading assignments and focus on answering questions and giving detailed responses to
student work. Our project plans to have almost all questions be auto-graded, which will help reduce
the time that TAs spend grading each week. This allows the TAs to spend more time grading the
non auto-graded questions and allows them to give better feedback to the students.

Finally, we aim for our project to be a model for other courses to follow. We hope to inspire other
instructors to revitalize how they teach material and use their time more efficiently. Through the
new approach this technology brings, we aim to improve all our users’ experience- we do not want a
product that assists the teachers but makes students’ lives harder. Students, TAs, and professors
have very different approaches and goals when it comes to a course. Through our implementation
of our PrairieLearn solution, we aim to keep the user experience in mind and develop a product that
will satisfy our users’ needs.

10

2.​ Requirements, Constraints, And Standards

2.1 REQUIREMENTS & CONSTRAINTS

To make sure that our project meets the needs of our users, we have defined many requirements of
various types. Creating these requirements ensures that we cover all aspects necessary to create a
robust, user-friendly, and efficient learning platform.

Our functional requirements include the need to implement all homeworks that have been used for
CPRE 2880 in the past, where all document-format questions are coded into the Prairie Learn
course. Additionally, all but a handful of questions should be able to be autograded, including those
involving student-written code segments. The only questions that won’t be autograded are
questions that involve paragraph answers, which will need to be manually graded. We also require
the randomization of almost all parameters in questions so that each question can be practiced an
unlimited number of times. This helps enhance the engagement and learning experience that our
project will provide students.

For our aesthetic requirements, it is crucial that our project is free of bugs and typos. This means
that when no questions will be confusing for students, nor will any problems occur when a student
tries to type in an answer and submit their answers. This ensures a polished and professional
appearance, which is essential for maintaining high user satisfaction for the students and professors
that will utilize our project for effective teaching and learning.

Our user experience requirements focus on creating an engaging and interactive experience, which
is key for our student users. New question types need to be thought of and implemented with a
strong emphasis on interactiveness. This is what will set our project apart from others. Questions
also should be formatted in a way that is easy for the user to understand and interact with, making
the learning process more intuitive and enjoyable.

Lastly, our resource requirements include the implementation of the Virtual/Emulated Cybot
interface within our project, allowing students to practice more with embedded programming
without having to be in the lab room, especially when there are only a limited number of Cybots
available for all CPRE 2880 students. Documentation must be written about each aspect of our
implementation to support ongoing development for our project and provide clear guidelines.
Additionally, we aim to create tutorials for other classes that want to set up their own PrairieLearn
server.

2.2 ENGINEERING STANDARDS
2.2.1 IMPORTANCE

Engineering standards are important because they ensure safety, reliability, and consistency when
designing and creating new products and protocols. Engineering standards are defined protocols
that can be followed by everyone because they provide a common language across different
engineering disciplines, further ensuring any product in any area continues to follow the safety
protocols defined by the engineering standards. This is extremely important because everyone uses
multiple products on a daily basis, such as driving a car or using a wifi connection. Consumers need
to be able to rely on products, and standards help ensure trustworthy engineering practices.

2.2.2 STANDARDS AND DESCRIPTIONS

The first relevant standard we chose was ISO/IEC/IEEE 14764:2022, Software Life Cycle Processes -
Maintenance. This standard defines processes for the maintenance of software throughout its

11

lifecycle. It outlines activities and tasks associated with maintaining software, such as planning,
implementing changes, and managing resources. The primary goal of this standard is to guide
people to keep maintaining their software which is critical, as it ensures that software remains
functional, secure, and up to date, especially as new vulnerabilities or bugs are discovered.

The next relevant standard we chose is ISO/IEC/IEEE 42010:2022, Software, Systems, and Enterprise
- Architecture Description. This standard focuses on defining and describing the architecture of
systems, software, and enterprises. It sets guidelines for documenting architecture decisions, using
viewpoints and models to represent different aspects of the system. Its goal is to provide a
structured method for capturing and sharing architectural information, ensuring that all members
(or as the document describes them, stakeholders) have a clear understanding of a system’s
structure and behavior. This helps in making the communication between system design and
implementation easier and clearer.

The final standard we chose was ISO/IEC 27001:2022, Information security, cybersecurity and
privacy protection. This standard gives a framework for groups to manage the security of their
information. It focuses on ensuring the confidentiality, integrity, and availability of our users'
information. It also tells us to identify risks to the confidentiality of information and take
appropriate actions to ensure the security of it. The intent of this standard is to implement and
constantly improve our security system, thereby reducing security risks and boosting the confidence
of our users.

2.2.3 RELEVANCE

Software life cycle processes -- Maintenance

As our project has been developed by two teams before us, software maintenance has affected every
aspect of our work. We are simultaneously maintaining legacy code, while also creating new code
that must remain maintainable for the senior design groups and other Iowa State course developers
that come after us. This standard goes in depth on types of maintenance and how problems should
be documented. As programmers, we need to document our code and any bugs we find to make it
as easy as possible for others to pick up where we leave off.

Software, systems and enterprise -- Architecture description

The architecture design standard is relevant to our project because architecture design is what is
used to express the architecture of our project. The architecture of our project helps us to
understand the properties of the project we are working on. The architecture descriptions allow us
to cooperate and communicate better as we work to integrate all of the architectures of our project.
As a team, we want to be thorough in our communication and understand the architectures of our
project and we can accomplish that with architecture descriptions. We will make sure to follow the
architecture designs that have already been created by Prairie Learn, and we will make sure to
create more architectural designs and diagrams that we stick to as the development of our project
progresses. We need to follow current architectural designs to ensure that the front-end and
back-end of our project will be easy to understand and make changes too. We also want the UI for
our project to be intuitive and easy enough for students to understand as they interact with it.

Information security, cybersecurity and privacy protection

The information security standard covers things such as the process for assessing risk, evaluating
mitigation effectiveness, security documentation, and improvement. These are things that are

12

certainly relevant to our project, since we will have sensitive information in our application such as
student grades and homework answers. It is important to assess the risk our platform has for
leakage of such things so that we can come up with solutions to improve the platform’s security and
prevent issues proactively.

2.2.4 ADDITIONAL STANDARDS

From everyone on the team, we chose the standards:

●​ Standard for Configuration Management in Systems and Software Engineering
●​ ISO/IEC/IEEE International Standard - Software engineering - Software life cycle processes

- Maintenance
●​ ISO/IEC/IEEE International Standard - Software and systems engineering --Software

testing --Part 1:General concepts
●​ ISO/IEC/IEEE International Standard - Software and systems engineering - Software testing

-- Part 2: Test processes
●​ IEEE Standard for Software Verification and Validation

All of the standards we chose are roughly the same, where each standard focuses on one aspect of
software and system design and development. We decided to focus on the Maintenance,
Architecture, and Security standards as they have the least amount of overlap in the subject matter
covered.

2.2.5 Modifications and Incorporation

After reading the standards we found, we have a set of modifications that we intended to
incorporate into our product. One such modification is a security risk assessment of the platform,
which is outlined in ISO 27001:2022. A risk assessment allows developers to prevent undesired
effects, ensure the intended outcome of the product, and help continuous improvement. Risks are
anything that affects the confidentiality, integrity, and availability of the platform, and assessing risk
is based on the potential consequences of a risk and the likelihood of that risk happening. To
implement this modification, we surveyed our product and compiled a list of risks based on these
ideas.

Another modification is an increased emphasis on documentation. IEEE 42010:2022, the standard
on architecture description, outlines how we are to document the architecture of the system. Our
architecture description features system elements, relationships between those elements, the
system’s relationship with the environment, system behavior, and the principles behind the design.
This description will help future developers understand the design of the system and allow for
easier improvement.

The IEEE/ISO 14764-2021 standard on maintenance will change our approach to maintenance of our
software. We have written code with a focus on readability, adaptability, and scalability rather than
just writing code that functions. We have accomplished this through our code conventions and
documentation to explain our work. Furthermore, this standard provides terms to classify types of
maintenance, such as corrective compared to additive maintenance. Even just being aware of this
taxonomy helps us consider the importance and purpose of changes we make to the code base. This
approach has helped us organize our tasks and understand how our work fits into the system as a
whole.

13

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
For our Senior Design project, we adopted a hybrid style of agile and waterfall to help achieve our
goals. Since the primary foundation for this project was already laid by the previous year’s team, our
style was partly agile focused as we did iterative development, where each team member worked on
different parts of the project. We also received regular weekly feedback from our advisor as we
implemented, tested, and improved features. Since we have a structured foundation for the
requirements of our projects requirements and design, we also made use of the waterfall style. We
had a clear image of what the final project should be and had hard deadlines for certain features to
be implemented. This methodology helped us adapt to any unexpected issues that arose as the
project progressed, giving us flexibility in meeting our ever-evolving understanding of the project,
while also adhering to the wishes of our advisor.

To track our process efficiently throughout the year, we used a suite of tools for project
management. This included Git, which is where our project is almost entirely hosted. PrairieLearn
has a feature that will automatically sync any changes made to our git repository to the server,
allowing for easy modification of code. We also used Git for issue tracking, which helped us
organize and manage bugs, tasks, and new features. For team communication, we made use of
Discord to coordinate tasks, share updates, resolve issues, and ask for feedback and help. Discord’s
channel-based organization allowed us to have dedicated channels for different project components
to ensure we remained organized.

3.2 TASK DECOMPOSITION

Figure 1: Task Decomposition Diagram

14

 In our task decomposition, we have many subtasks that go into making our finished product. With
our project management approach being Hybrid between Agile and Waterfall, we have steps to get
to a certain point but then sprints inside of the subtasks in order to complete the project by the
desired due date.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
By the end of the Fall 2024 semester, we wanted to reach several key metrics. The first metric that
we wanted to reach is to have our PrairieLearn application be completed in a beta version, where
half of the homework problems have been implemented into our application, and every question is
randomized and autograded. With these metrics planned, we wanted to have a working version of
our application ready for use by the CPRE 2880 students in the Spring 2025 semester. That way, we
could gain helpful feedback that can better our application. However, we weren’t able to complete
this metric for the Fall 2024 semester. We were able to implement half of the homeworks (6
homeworks in total into PrairieLearn), but we weren’t able to test any of the homeworks to make
sure they were fully randomizable and autogradable, and also just made sense for the students.

For the Spring 2025 semester, since we weren’t able to get our project ready for a beta test, we
changed our metric to create an alpha test before the end of the semester. This alpha test would
involve the first nine homeworks, which are fully randomized and autograded, to be tested by Dr.
Rover and her TAs. Even though this isn’t a beta test, we are still able to get some feedback on our
project that we can either implement or give to next year’s team. Our next metric is to finish
updating documentation from the previous team and complete any new documentation for
functionalities that we used or created. This is important for professors that will use our
application, as well as any future teams that continue expanding on our project. We also want to
have full canvas integration incorporated into PrairieLearn, where grades assigned from homeworks
in our application will be synced with Canvas.

3.4 PROJECT TIMELINE/SCHEDULE

Fall 2024:

Figure 2: Fall 2024 Gantt Chart

In our Fall 2024 Gantt chart, we detail the tasks and subtasks along with their expected completion
dates. The dates are recorded by the weeks in the semester. This Gantt chart and the tasks within
detail only the fall semester. We have our tasks coordinated by color with different subtasks within
them. The purple blocks show our setup subtasks so that we can use PrairieLearn. The blue blocks
show our learning and implementation subtasks. These include things like learning how to actually
use PrairieLearn and get comfortable with it and also finishing implementing questions that the
previous years team didn’t implement. The green blocks show our subtasks for improving upon
what is already put in place. This includes randomization of answers so we can create new question
variants and make questions graded automatically to give immediate feedback. The yellow block is

15

for our team's server to be set up and running. The orange blocks have subtasks that complete the
update of all documentation from previous years. This includes documentation for questions, server
setup, videos, etc. And finally, the red block is the end product with our project being completed
with all of the homework questions implemented, graded automatically, and completely
randomizable.

Spring 2025:

Figure 3: Spring 2025 Gantt Chart

In our Spring 2025 Gantt chart, it outlines our plan of testing the first six homeworks that we
implemented in the Fall 2024 semester, and then finishing the implementation of the rest of the
homeworks. This gantt chart also outlines us preparing for a beta/alpha test of our project, where
we will have a survey prepared to capture feedback from students and/or TAs and Dr. Rover. For
testing, we will also need to have a test Canvas course set up to simulate our project working with
Canvas and having grades from our project sync to Canvas. Lastly, we outline that we need to
update existing documentation and create new documentation to help with the onboarding process
of next year’s team.

With us using a hybrid style development model with both Agile and Waterfall, our Gantt chart
most accurately depicts our plan throughout the year. We will have sprints inside of our tasks and
subtasks to ensure that our project is completed. Inside of our overall plan though, we do take a
linear approach. With a lot of setup starting first, to then get into learning and creating, then to
updating and upgrading our work, to then updating documentation, all ending in a finished
product.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION
Get Prairie Learn server initialized

We could run into an issue with ETG where they can’t provide a Virtual Machine for us to use as our
server.

Probability of risk: 0.05

Outcome of risk: We were able to quickly obtain a Virtual Machine from ETG shortly after
requesting one, so no problems occurred doing this process. This allowed us to start working on the
setup of our production server right away.

Get ASW to sign PrairieLearn Server Certificate for SSL

16

Only professors at ISU can submit requests to ISU ASW to sign an SSL certificate request. If a
professor won’t submit this request, we wouldn’t be able to allow students to connect to
Praririelearn via HTTPS, meaning malicious actors could snoop on their internet traffic.

Probability of risk: 0.01

Outcome of risk: We gave our client/advisor details on how to request a signed SSL certificate.
Within a couple of days, our client/advisor got a response back from ASW with a signed SSL
certificate. This allowed to quickly get back to setting up our server to host our application.

Get ISU Integration with Okta for student authentication

Once again, only professors at ISU can submit a request to allow ISU students to use SSO for our
application. If a professor won’t submit this, students won’t be able to sign into our application,
making it useless.

Probability of risk: 0.01

Outcome of risk: Instead of Okta, we switched to using Microsoft OAuth as the primary method
for student authentication onto our PrairieLearn application. We have had issues for a while with
trying to set this login method up, such as Dr. Jones only being able to submit requests for certain
actions to be performed with ISU IT. However, we have been making great progress on this issue so
far by having constant communication with Dr. Jones.

Review CPRE 2880 concepts

To review the concepts from CPRE 2880, each member of the team needs to take the time
(individually) to go through CPRE 2880 material and review concepts that they don’t remember.
This task can be delayed if members of the team aren’t willing to put in the additional time to
review concepts from CPRE 2880.

Probability of risk: 0.1

Outcome of risk: There was no issue with each team member reviewing CPRE 2880 concepts on
their own. If a team member did have a misunderstanding or lack of knowledge on a concept while
working a homework problem, then they would either ask another team member on our Discord
channel or ask Dr. Jones during our weekly advisor meetings.

Learn how to use PrairieLearn

It might take more time than needed to learn PrairieLearn if teammates are not putting in the time
to dive through PrairieLearn and learn the different services that it provides. This can happen by
team members not exploring PraireLearn on their own or not reading through any documentation
from the basics of PrairieLearn to how the previous team created their application.

Probability of risk: 0.1

 It would further prohibit this task from completion if members on the team aren’t communicating
and sharing their findings for others on the team.

Probability of risk: 0.1

Outcome of both risks: This risk never became a huge issue for the team. To make it easier to
learn PrairieLearn, everyone on the team would dedicate a certain amount of hours each week to
play around with and understand the PrairieLearn framework. Then during our weekly advisor

17

meetings, everyone would share their findings and make the learning process go a lot more
smoothly.

Begin coding questions

This task can be delayed from the projected timeline in our Gantt chart if team members can’t
access either the team’s server or can’t get a local version of PrairieLearn running on their machine

Probability of risk: 0.4

Outcome of risk: Everyone was quickly able to get a local version of PrairieLearn running on their
computers. This made it super quick for everyone on the team to dive into PrairieLearn, learn about
the framework, and start developing homework problems.

Learn how to use Cybot emulator

This task could become harder to complete in our projected timeline if there is no documentation
about the emulator from the previous team, or if the documentation that does exist isn’t thorough
enough.

Probability of risk: 0.3

Outcome of risk: There was thorough documentation made on the Cybot emulator from the
previous team. However, we didn’t get much, if any, time to work on the Cybot emulator. So due to
time constraints, this risk never affected us.

Learn how to use student code autograder

Similar to the previous task, learning how to use the QEMU ARM autograder could become a more
time-intensive task if the previous team didn’t write detailed documentation. This is because the
ARM autograder was created by the previous team, so the documentation is our main resource for
learning about this specific autograder.

Probability of risk: 0.3

Outcome of risk: This risk did have a pretty big impact on our progress for the ARM autograder.
The documentation that was made for the ARM autograder did a decent job on explaining how it
was created, but didn’t do as great of a job on how to actually use the autograder to autograde ARM
programming questions. Since this autograder is needed for just one homework, we decided to
move on and work on the rest of the homeworks that didn’t need to use this autograder.

Learn how to use the emulation tools that are already incorporated

Similar to the previous task, this task can become delayed and difficult to complete if the
documentation written for the QEMU ARM autograder is not detailed enough.

Probability of risk: 0.3

Outcome of risk: Similar to the previous risk, we never fully learned how to implement the ARM
autograder into PrairieLearn to autograde ARM-based questions Since the documentation wasn’t
super detailed for this part, we spent a lot of time just trying to get the autograder to work. After
many trial-and-error sessions, we decided to move on from this autograder and instead improve on
other homeworks,

18

Finish implementing questions for HW 9

This task can be delayed if team members are not completing their portion of work, not
communicating with the team, and/or not showing up to weekly team and advisor meetings.

Probability of risk: 0.4

Outcome of risk: The completion of HW 9 has been going smoothly. Team members have done an
excellent job completing work that they say they’ll do every week and quickly implementing
changes to homeworks. HW 9 is no exception, and it has been completed with full randomization
and autograding to meet the needs of our users.

Finish implementing questions for HW 12

Similar to the previous task, this task can be delayed if team members are not completing their
portion of work, not communicating with the team, and/or not showing up to weekly team and
advisor meetings.

Probability of risk: 0.4

Outcome of risk: As mentioned before, team members have put an amazing effort into the project
and are making great progress every week. However, this risk became a bigger issue because of our
lack of understanding with how to use the ARM autograder to finish implementing the questions
on HW 12. Because of this and time constraints, we weren’t able to finish HW 12 and will have to be
picked up by next year’s team

Learn how to make variants of questions by adding randomization

For some questions, we may struggle to determine parameters to randomize, or with coding the
randomization. This requires learning new coding techniques and implementing bug-free
questions.

Probability of risk: 0.4

Outcome of risk: This risk never grew to become an issue for the team. While learning how to use
PrairieLearn, we were able to grasp the different techniques that we could use to make the
formatting of each question unique and engaging to students. We also would ask our advisor for
ideas on how we could improve the randomization of questions if we were ever stuck.

Update existing questions to make them fully autogradeable

This task can be delayed from our projected timeline if we can’t get the C autograder or the ARM
autograder to work as expected.

Probability of risk: 0.2

This task can also be delayed if team members are not completing their work and doing their
portion of the autograding for certain questions.

Probability of risk: 0.3

Outcome of risk: This has not been a huge problem in the development of our project. Even
though we weren’t able to figure out how to use the ARM autograder, most questions rely on the
built-in C autograder for autograding questions. The team was able to vary quickly learn how to use

19

the built-in autograder, and allowed us to autograde all questions on the HWs that we’ve completed
so far.

Get our server VM running PrairieLearn with all questions

We could get behind on schedule with implementing all questions on the server if team members
have not contributed to implementing all questions from HWs 9 and 12 into PrairieLearn

Probability of risk: 0.3

We could also be prevented from implementing all questions on our server if we can’t create our
own server from ETG

Probability of risk: 0.05

Outcome of both risks: There hasn’t been an issue with team members not contributing to the
project, nor has there been a problem with ETG. Team members have made adequate progress on
each HW of our project and our server has been up and running almost perfectly since the
beginning of our project. All questions that have been implemented are currently on PrairieLearn
and can be accessible by anyone, there just isn’t a reliable authentication setup to allow only ISU
students and staff to login to our project.

Update Documentation (Local setup, server setup, question implementation, videos)

All documentation could be hindered by the time necessary to develop a cohesive visual design
standard.

Probability of risk: 0.2

All documentation could be hindered if previous team documentation is missing more detail than
originally evaluated.

Probability of risk: 0.3

All documentation could be delayed if a team member does not complete their portion of the work
timely, or their work is not up to standard.

Probability of risk: 0.1

Outcome of all three risks: To make sure that we have enough time to update and/or create new
documentation, we decided to prioritize the second half of the Spring 2025 semester for working on
the documentation. By making this plan early, team members put in the time and effort to get most
of the design and HW implementation done before the second half of the semester so that they
could shift their focus to documentation.

2880 PrairieLearn Demo: existing HWs implemented with autograded, randomized

Product may perform worse than Canvas in beta testing.

Probability of risk: 0.5

Risk mitigation plan: Use student and professor feedback to optimize PrairieLearn during the
spring semester, reworking whole sections if necessary.

20

3.6 PERSONNEL EFFORT REQUIREMENTS

Estimated efforts:

Task Description Effort (Hours)

Planning Initial planning of our project. Understand the needs
and requirements of our client. We’ve allocated 10 hours
to ensure we all have a solid understanding of what we
need to make.

10

Research Perform product research on alternative products, view
the previous team's project and gain an understanding
of it. 15 hours should be enough for us to research other
options as well as gain an understanding of how the
previous team’s project works.

15

Learning software Spend time learning how to create questions, randomize
answers, and auto grade them. 15 hours should be
enough for each member to understand how
PrairieLearn works and how to use it to create
questions.

15

Server Setup Get the server that PrairieLearn will be hosted on setup
and ready for hosting. This task mostly relies on us
waiting for members of the ISU IT team to get back to
use, so we allocated 15 hours.

15

Finish implementing
questions

Finish implementing homeworks that last year's team
didn’t finish. We only needed to implement homeworks
9 and 12, so we allocated 20 hours.

20

Get questions
autogradable and
randomized

Modify last year’s teams questions so they are
auto-graded by PrairieLearn and randomized so
students can have multiple attempts. This task is
possibly the most daunting of them all, so we allocated
the most amount of time, 35 hours.

35

Bug testing Perform testing of our project to ensure no bugs will
harm our users' experience. Since we don’t know how
many bugs we’ll have to fix, we allocated 15 hours just to
be safe.

15

Updating documentation Some parts of the previous team's documentation is
either inaccurate or needs to be updated. As such we
allocated 20 hours just to updating documentation and
videos, to ensure that those who follow us could easily
set up a PrairieLearn course.

20

21

Final demo Have a working demo of all homeworks, with each
question being auto-graded and randomized by the end
of the semester. Since everything should have been done
in previous tasks, we allocated 10 hours just to making
sure our demo is ready.

10

Table 1: Estimated Effort Requirements

Actual efforts:

Task Description Effort (Hours)

Planning Initial planning of our project. Understand the needs
and requirements of our client. We took more time on
this task to really understand the needs of our client and
users.

20

Research Perform product research on alternative products, view
the previous team's project and gain an understanding
of it. Similar to the estimated efforts, we did spend
about 15 hours researching other options as well as
gaining an understanding of how the previous team’s
project works.

15

Learning software Spend time learning how to create questions, randomize
answers, and auto grade them. Throughout the entire
year, we would learn new aspects of the PrairieLearn
framework, so this task was done parallel with our other
tasks.

30

Server Setup Get the server that PrairieLearn will be setup and ready
for hosting. Due to complications of getting Microsoft
OAuth to work, the final completion of our server took a
lot longer than expected.

35

Finish implementing
questions

We thought that we just needed to implement questions
for homeworks 9 and 12, but all other homeworks were
in an incomplete state as well. This required us to
thoroughly test each HW and make adjustments to the
questions.

35

Get questions
autogradable and
randomized

Most of the questions implemented by the previous
team didn’t have either great or no randomizing and/or
autograding functionality. Because of this, we spent a lot
more time than expected making sure each question of
each HW was randomizable and autogradable, and
fixing questions that didn’t meet these requirements

45

Bug testing Perform testing of our project to ensure no bugs will
harm our users' experience. There were a decent

25

22

amount of bugs/imperfections in the HWs implemented
by the previous team than was expected, so we spent
longer than planned on this task.

Updating documentation Some parts of the previous team's documentation is
either inaccurate or needs to be updated. We also
learned quite a bit about PrairieLearn that hadn’t been
documented already, so we had to create more
documentation than what was expected.

25

Final demo Have a working demo of all homeworks, with each
question being auto-graded and randomized by the end
of the semester.

10

Table 2: Actual Effort Requirements

Observations:

Comparing our estimated efforts with our actual efforts, we first spent a lot more time planning our
project design. We also spent more time than expected learning how to use the PrairieLearn
framework because of how vast and complex the framework can be. Because of our issue with
Microsoft OAuth, we spent quite a bit more time on getting our server fully set up and functional
with PrairieLearn. Implementing questions and making them autogradable and randomizable also
took a lot more time and effort than we expected because we had a different idea compared to the
previous team of how the HWs should look and function. We had a big emphasis on having each
question being randomized as much as possible and having full autograding capabilities so the
students could get instant feedback.

3.7 OTHER RESOURCE REQUIREMENTS

Time, Canvas page, Server, youtube channel, VMs on personal computers

Many of our remaining resources were more intangible. For help with development, we used the
PrairieLearn git forum and the PrairieLearn Slack server to learn more about the PrairieLearn
framework. Being able to read posts from other developers or even pose our own questions will help
us when we get stuck. Furthermore, we also consulted the official PrairieLearn documentation, the
previous team’s documentation writeups, and videos that they made on the team’s youtube channel
for guides on how they implemented questions and used PrairieLearn.

To be able to run and interact with the PrairieLearn framework, we needed to install VMs onto our
personal computers to run local instances of PrairieLearn for question development. We also
needed to use a VM (obtained from ETG) to host our project so that our users can login and access
the different HWs.

To be able to test our project and make sure it works well with Canvas, we needed to set up a test
Canvas page to see how well grades obtained on PrairieLearn can be synced to the gradebook in
Canvas.

23

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context
Area Description Examples
Public health,
safety, and
welfare

Our application is beneficial to the
public in this respect by helping to
reduce stress on students enrolled in
2880 by providing a better learning
environment. Student grades will
improve rather than degrade if our
application works as expected. It also
relieves the burden placed on TAs and
the instructor by autograding
assignments, preventing manual labor
needed to grade. The application is also
fair to all students by giving randomized
questions, which in turn will curb
copying and academic dishonesty.

Reduced student stress, reduced
burden on TAs and professors,
improved learning environment
that is equally available to all
students.

Global,
cultural, and
social

We believe our application will help
2880 students learn material and
prepare them for their future careers.
Students should have a better learning
experience than they had with previous
teaching methods as well. It is also
tailorable to an instructor’s needs
because the design can be modified at
any time through simple code changes.
All students will have equal access to the
platform as well helping to level the
playing field for time or
resource-challenged students.

Increased student learning, better-
prepared graduates, more time for
TAs and professors to do more
important tasks.

Environmental If our homeworks are online, it saves
paper from being used for physical
copies, reducing the number of trees
that need to be chopped down for paper.
Also, since our servers are hosted by
Iowa State on campus, they are sourced
by more renewable energy than if they
were hosted elsewhere. These are a few
ways our application has a positive
impact on the environment.

Decreased paper production,
decreased landfill use, decreased
use of non-renewable resources

Economic Our application is free for all 2880
students to access, unlike some
platforms used in other courses that may
require a subscription or access key. This
will prevent students from having higher
tuition bills than they already have every

Decreased student fees, decreased
student tuition, more successful
students that make more money

24

semester. Our application also serves as
a template for other courses to make
something similar which saves students
money for those courses for the
aforementioned reason. And
additionally, this course will be free to all
students, so no specific group will be left
out because they cannot afford it.
Overall, these aspects will allow our
project to create a positive impact rather
than a negative one.

4.1.2 Prior Work/Solutions
One of the first steps for our project was research into similar products that are on the market. The
most similar products we found were Coursera, zyBooks, LinkedIn Learning, and Quizlet. All of
these are teaching digital teaching platforms with features that make them unique. Quizlet
simulates flashcards and allows users to create card sets that they share with friends and the
community [2]. LinkedIn Learning focuses on teaching career skills [1]. ZyBooks simulates the feel
of a textbook but with the addition of interactive features [3]. Coursera is similar to LinkedIn
Learning but with a bigger catalog [4]. One thing that all these programs have in common is that
most of their functionality is behind a paywall.

There are a lot of advantages to our platform. For one, it is tailored to CPRE 2880 and eventually
integrable with Canvas. It is also open source and changeable by the course instructors. The
questions are robust and autogradable, and it is free to students. These are the advantages our
application offers. There are some definite drawbacks as well, however. The system will likely have
bugs since it's made by students rather than professionals. It also requires technical skills to make
new questions since they are written in Python and C. It also requires some work for TAs and
instructors to learn the platform.

Something worth mentioning is that we inherited this project from two previous senior design
teams. This introduces some unique aspects to our project compared to teams who started fresh.
Some aspects of the platform were already complete, which saved us a lot of time. There is also a
somewhat extensive documentation repository that answered a lot of our questions about the
project. However, there were some drawbacks to our situation. It was sometimes hard to understand
the previous group’s work, especially when the documentation is missing. All the easiest aspects of
the project are already done as well, leaving us with more challenging work.

[1] Coursera, “Coursera | Online Courses & Credentials by Top Educators. Join for Free,” Coursera,
2024. https://www.coursera.org/
[2] “zyBooks - Build Confidence and Save Time With Interactive Textbooks,” zyBooks.
https://www.zybooks.com/
[3] LinkedIn, “LinkedIn Learning: Online Courses for Creative, Technology, Business Skills,”
Linkedin, 2025. https://www.linkedin.com/learning/
[4] “Quizlet,” Quizlet, 2023. https://quizlet.com/latest

4.1.3 Technical Complexity
Internally, our platform has a huge set of applications that work together to support it. Our
application is built with the PrairieLearn framework, an open source framework for educational
platforms created at the University of Illinois. The OS running our PrairieLearn server is Linux,

25

which is contained inside a Docker container. Using Docker allows for easy setup of the application
keeps the program isolated from the rest of the system. The Linux server is hosted as a virtual
machine on one of Iowa State’s servers. This server is accessible via HTTPS and SSH.

Inside of the application is a set of homework assignments. Each assignment is composed of Python
scripts, an HTML file, a JSON file, and potentially C code depending on the type of question. These
components are altered for each question to implement the design desired. The content of these
files is specified by the PrairieLearn framework and necessary for a functioning application.

One of the more interesting technical aspects of our platform is the autograding functionality.
Simpler questions (such as math-based and fill-in-the-blank questions) are graded using lines of
Python code. More complex questions, such as ones where users are required to write C or
Assembly code, are graded by isolated autograder programs. These programs run separately from
PrairieLearn in their own docker containers and are given “jobs” through shared folders in the base
Linux server. The PrairieLearn foundation provides a C autograder that compiles and runs C code
inside the container and compares its output to the desired output. This is good, but for our
project, we want to emulate an actual CyBot running code, so we have containers developed by the
previous team that have virtual machines emulating the actual CyBot hardware. This way, the
student can have an experience that is the same between our application and the physical lab.

There is also notable external complexity in our project. It is not easy to design questions that are
truly engaging for a user. It also is difficult to find ways to randomize questions, especially when
they involve code. We also are writing questions on material that we have not learned in several
semesters. These are some of the things that make this project difficult.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Our first key design decision that we made for our project was to implement auto graded questions.
This enables instant feedback for students while saving professors and TAs time on grading. This
decision is crucial as it supports one of our goals of providing students with immediate feedback
about their assignments, while also allowing professors and TAs to focus more on teaching rather
than grading. Another key design decision was to incorporate randomized questions by using
randomized parameters within questions, making each attempt unique for students. This is
essential, as it ensures students have unlimited practice opportunities with varying question
parameters, allowing them to gain a further understanding of core concepts. Finally, our last key
design decision was using Prairielearn as the project’s main platform, as it allows for us to use
question randomization and autograding. Choosing Prairielearn for our project allowed us to utilize
its fully modular capabilities to create questions that are randomly generated with randomized
parameters that can be automatically graded by Prairielearn, unlike alternatives like Canvas.

4.2.2 Ideation

Options to autograde questions:

-​ Option 1: manual grading by professor or TAs
-​ Option 2: not asking code questions that can’t be autograded
-​ Option 3: write own compiler + unit tests to run in PL
-​ Option 4: all multiple choice
-​ Option 5: use PrairieLearn’s built-in C and Python autograder
-​ Option 6: create our own custom autograder container in addition to PrairieLearn’s version
-​ Option 7: make harder autogradable questions, like programming ones, graded based on

participation

26

-​ Ex: if you submit code, no matter if it's right or wrong, you will get participation
points for that question

The decision we had the most choices with was the goal of having almost all questions able to be
autograded. Although an achievable goal, we had to determine if it was worth the risks and costs,
and if so, how it should be implemented. The obvious alternative is to allow manual grading, and
forego our goal. Or, we could remove all questions that cannot be simply autograded- mainly
paragraph response and student-written code questions. We also considered adapting them by
taking the core concepts of these questions and turning them into multiple choice, or other format,
questions.

Autograding the C and ARM coding questions is the most complex part to implement. Some
choices for achieving this included using PrairieLearn’s built-in autograders for C and Python, or
using these versions in addition to adding a custom autograder container. If given more time and
materials, we could even have decided to build our own compiler and unit testing solution from the
ground up to run in PrairieLearn. Finally, we could have utilized a “challenge question” approach,
where more difficult programming questions are asked, but students receive participation points as
long as they tried in good faith.

4.2.3 Decision-Making and Trade-Off

To identify the pros and cons of which options to use based on our list of brainstormed options, we
had to think about our ultimate goal with our design and user needs. We want to have questions
that are autogradable so professors and TAs don’t have to worry much about manually grading
assignments, but we also want to develop complex questions that are unique and engaging for
students.

 Pros Cons Trade-offs

Option 1 ●​ Professors and TAs
have more say in
how a question gets
graded

●​ Don’t have to worry
about making tests
and making
questions
autogradable

●​ Doesn’t need our
professor’s and
TA’s need of
questions being
autogradable

●​ Students won’t get
instant feedback
when answering a
question

●​ Answers can be
mistaken and
points can be
wrongfully
deducted

By picking this option over
the rest, we are giving up:

●​ saving time for
professors and TAs

●​ Instant feedback
for students

●​ Incorrect grading
by human error

for:
●​ More say in how a

problem gets
graded

●​ The convenience
of not having the
extra step to
autograde
questions

Option 2 ●​ Saves time in
developing new
strategies for
autograding
difficult coding

●​ Can only ask
coding questions
in a certain
format, which can
hinder uniqueness

By picking this option over
the rest, we are giving up:

●​ Uniqueness of
problems

for:

27

questions
●​ Don’t have to worry

about creating
custom autograder
containers for
questions that
PrairieLearn can’t
handle

●​ Not having many
autograder
problems

Option 3 ●​ We know the whole
process from
submitting an
answer to how it
gets autograded

●​ We can customize
how questions get
autograded

●​ Would take a lot of
time to get
working properly

By picking this option over
the rest, we are giving up:

●​ Time that we
could use to
develop and
improve problems

for:
●​ Making our own

method to
autograde
questions

Option 4 ●​ Easy to autograde
●​ Will have almost

no autograder
issues or debugging

●​ Questions will
only be in a
multiple-choice
format

●​ Hinders the
engagement of
questions

By picking this option over
the rest, we are giving up:

●​ Problems that our
engaging for
students and
encourage learning

for:
●​ No difficulties

with making
problems
autogradable

Option 5 ●​ This is great at
autograding C code
submitted by
students

●​ Also works for
calculation based
questions

●​ Does not support
ARM assembly
language input

●​ Does not simulate
the actual
hardware that
students use in lab

By picking this option over
the rest, we are giving up:

●​ ARM assembly
question
autograding

●​ Simulations of real
2880 hardware

for:
●​ Ease of

implementation

Option 6 ●​ More types of
questions can be
autograded, such as
ARM assembly
questions

●​ We’d know how to
use the custom

●​ It would take some
time to create a
functioning
autograder
container

By picking this option over
the rest, we are giving up:

●​ Time that could be
used for problem
development or
improvement

for:

28

autograder ●​ More variety in
questions that can
also be autograded

Option 7 ●​ Easier question
design since you do
not need to write
code to grade the
question

●​ All students will get
points if they
attempt the
question, regardless
of correctness

●​ This would not
provide feedback
to students to let
them know if their
solution is correct

●​ Students may
submit low-effort
and
non-functioning
solutions.

By picking this option over
the rest, we are giving up:

●​ Instant feedback
to students.

for:
●​ Easier question

design and
participation
grading.

4.3​ FINAL DESIGN

4.3.1 Overview

Our current design is a server with PrairieLearn running as a Docker container. Users access the
server through their web browser with the server URL. Inside PrairieLearn, we have a list of
homework assignments and their respective questions. A question is composed of a JSON file with
basic information about the question, an HTML file that structures the visual component of the
question, and a Python script that supports the internals. Questions can get autograded through
either the Python script or an autograder image that checks programs written in C or ARM
assembly. TAs can view student responses and provide feedback if answers are not autograded.

29

4.3.2 Detailed Design and Visual(s)

Figure 4: Block diagram of PrairieLearn components

The server hosting our PrairieLearn application is an Ubuntu 22.04 Linux machine. It has port 22
open for SSH which allows us to access the server for maintenance. Ports 80 and 443 are also open
for HTTP/HTTPS traffic to allow users to access the site through the URL. User traffic is redirected
with NGINX to port 3000, the PrairieLearn application port. PrairieLearn is hosted in a Docker
container, which functions like a virtual machine. The ARM assembly and C autograders are
separate containers connected to the PrairieLearn container through a socket and input/output
directories.

PraireLearn is structured with courses with instances. An example of how those are used is “CPRE
2880” as the course listing and “Spring 2025” as the instance. Inside each instance are homework
sets with individual questions. Each question has a “info.json” file that includes a unique ID, a title,
a category, additional tags, and autograding options. Questions also have an HTML that allows the
designer to create the visual components of the question, like diagrams, prompts, and entry boxes.
There is also a “server.py” that randomizes question parameters and grades the question if it is not
programming based. If it is programming based, there is a separate folder called “tests” that has a
correct program and scripts to initialize the autograder.

There are three types of users for PrairieLearn: students, TAs, and professors. Students can view
their assignments and submit answers. TAs can view those answers and provide feedback if
necessary. Professors can design and modify the questions/course. Users login with their Iowa State
credentials through Microsoft Authentication.

PrairieLearn is also integrated into Canvas so that grades are automatically synced and the
PrairieLearn application window is embedded into the Canvas site. By integrating Canvas into our
project, it makes it easy for student grades to be tracked both in PrairieLearn and in Canvas.

30

4.3.3 Functionality

Our design would ideally become a staple in CPRE classes. Professors with little technical skill
would be able to set up a virtual machine to host a PrairieLearn instance just by following our
documentation. Professors, TAs, or senior design groups could then implement course specific
questions. Both professors and students are able to log in with an account connected to their
university account, making access restriction easy. Professors can then release a course for their
students to access, customize which questions will be graded, and publish assignments.

Figure 5: Journey Map describing student use of PrairieLearn

PrairieLearn should be an effective platform for students to complete homework assignments and
practice concepts. Questions are more than just short answers or multiple choice- we implemented
questions that are more interesting and require more effort so students must think through each
question, even if they have seen a variant of the problem before. We aim for our solution to become
a standard for a flexible engineering homework platform that teaches students well. Our design
should have minimal bugs and cause minimal frustration as students work through problems.
Courses interface with Canvas to automatically update student grades. Overall, the effect will be
reduced stress on professors and students, reduced time spent grading, and improved student test
scores.

4.3.4 Areas of Challenge

At the moment, our platform is well developed and ready for Beta testing. However, it did have
some noted faults we had to work through. One is that all homework questions were not
implemented or are implemented improperly. There were also more manual graded questions than
preferred, since manually graded questions create more work for TAs that we wish to avoid.
Additionally, many questions were simple and needed to be more engaging for users. We overcame
these issues by going through each homework set, testing the problems, taking notes on possible
improvements, and then implementing those changes. We then tested each other’s work and made
additional improvements as necessary.

Another struggle that we had initially was in inheriting a project from a previous design team. It
was hard to jump in on a technical project that has been ongoing for two years. We overcame this
by carefully reading the documentation from the previous years, and we have created new
documentation that should help the future design team/s begin their work.

4.4 TECHNOLOGY CONSIDERATIONS

The technologies used in our design include Prairielearn, QEMU ARM emulator, and Git. Our first
technology, Prairielearn, integrates well with our project as our goal is to create a dynamic,
customized, interactive learning environment. Through use of its completely customizable

31

questions, we can provide auto grading and question randomization, which will help students learn
through practice. However, Prairielearn does require a certain degree of technical skill to program a
course in Prairielearn. In order to create questions in Prairielearn, there’s no simple interface you
can use, you have to hard code it from scratch, which could dissuade potential users. Another
option we could’ve used is the technology that was originally used, Canvas. Professors are already
familiar with it, and it’s easy to create homework assignments. However, the autograding abilities of
Canvas are mediocre and the question customization is almost non-existent, meaning Prairielearn
is better for our project.

Our next technology was the QEMU ARM emulator, which enables hardware emulation of a TM4
microcontroller. This technology allows for students to interact with embedded systems without
needing a physical device such as the lab robots. Some drawbacks of this is the difficult setup of the
emulator and the maintenance required to ensure compatibility with Prairielearn. An alternative to
using the QEMU ARM emulator would be to use the Cybot emulator which was made for CPRE
2880. Since it was specially made for this course, it has all the features that the QEMU ARM
emulator has. However, it has less documentation than QEMU while also having issues syncing to
Prairielearn, meaning that the QEMU ARM emulator was the better option for us. However we
haven’t given up on using the Cybot emulator, and we have hopes the future design group will finish
the work we and previous design teams have started.

The final technology we used was Git. Prairielearn has the ability to pull courses from Git repos,
meaning any code we’ve worked on for our project can be pulled by the server whenever a new
update is pushed. It also helps us with tracking code changes and managing our project as a whole.
The only downside of Git is that it could be challenging for professors unfamiliar with Git. An
alternative to using Git would be to just host the course files on the Prairielearn server, but this
makes it harder to make changes to the course, as you will have to manually upload the files. For
these reasons we chose to use Git to host our course files.

5 Testing

5.1 UNIT TESTING

The main thing that our project consists of are homeworks that contain engaging questions to help
students learn tricky-to-understand concepts throughout their CPRE 2880 journey. Because of this,
we wanted to test and make sure that each question of each homework makes sense to students,
has an easy interface for answering the questions, autogrades questions correctly, gives the correct
solutions, and provides students with feedback that helps them understand why they got a
particular question wrong. We also wanted to test that the server that hosts our application of
homeworks has been set up correctly so that students and professors can access our project very
easily via ISU SSO.

Before deploying our project to CPRE 2880 professors and students, we stress tested each
homework by going through each question to make sure questions have a good format, are
consistent, provide feedback, are randomizable, and autograde the questions correctly. There was
no special tool that we needed to test our project, just continued to use a local version of
PrairieLearn on our machines to perform these tests.

Once those tests were finished, we had Dr. Rover and her TAs experiment with our project. They
were tasked with interacting with the homeworks and answering questions to see if things made
sense for them. They were also tasked with using the PrairieLearn application as if they were
viewing and/or manually grading HWs, and reading guides that we wrote to better understand the

32

PrairieLearn framework. They then provided us with feedback on what went well, what didn’t go so
well, and what could’ve been improved during their experience. This feedback will be used to
improve on our project, which will be implemented by next year’s team.

5.2 INTERFACE TESTING

Within our project design, there are two interfaces that will be used by our intended users. The
interface that students will interact with is the “student view”. For each question of a homework
assignment, this interface will show students the question, the number of points of the question,
what they missed upon submitting their answer, and feedback to help them understand what they
missed. CPRE 2880 professors and TAs will interact with an interface called the “dev view”. In this
interface, professors and TAs will see the correct answers for each question, can regrade questions
that students have answered, and can access the software that creates a question and its correct
answers, therefore allowing them to modify questions or create new questions.

In section 5.1, it similarly describes how the student and professor interfaces were tested by current
professors and TAs. We were first able to view each interface on our side and stress test everything
to make sure things work as expected. Once we felt confident that everything worked as expected,
we then had a professor and TAs experiment with our project and give us feedback on what they
liked and didn’t like. The feedback that we received will then be used to make improvements by
next year’s team.

5.3​ INTEGRATION TESTING

The most critical integration path in our design is getting our project to connect with Canvas so
that assignment grades on our application will be automatically synced to the gradebook in Canvas.
This will allow professors and TAs to not have to manually enter grades into Canvas, thus saving
them time and allowing them to focus more on helping their students. This integration was tested
by making a mock/test Canvas course, and then seeing if points earned in our project were able to
sync to assignments made in Canvas.

5.4​SYSTEM TESTING

The PrairieLearn system was tested by testing each question of each homework to make sure that
they work well on the student’s end, where each question has a good set of randomizable
parameters and autogrades correctly. Then, we tested if grades/points obtained by students in our
application sync to the corresponding assignments made in Canvas. By using this testing method, it
ensured that all aspects of our system work.

5.5​ REGRESSION TESTING

To ensure that any new additions added don’t break the old functionality of our project, we created
thorough documentation to explain everything that we’ve developed thus far. We also performed
rigorous testing of each homework to make sure all questions had proper functionality within our
project. A critical feature that we ensured doesn’t break our project is that every component of our
system is scalable. By having everything be scalable, this allows for anything that we’ve already
developed to be adjusted in almost any way, especially if next year’s team decides to make any
improvements to the stuff we created. Since PrairieLearn is a constantly growing framework, it is
almost guaranteed that older functionality will need to be improved upon, thus having scalability is
driven by PrairieLearn requirements.

33

5.6​ACCEPTANCE TESTING
We have demonstrated that our functional design requirements have been met by ensuring that
each question of all homeworks has a consistent and understandable format, are randomizable and
autograded, and provides instant feedback upon missing a question. We also demonstrated our
non-functional design requirements have been met by showing our advisor new changes/additions
that we’ve made to the user interface and system properties. We have made sure to involve our
client/advisor in the acceptance testing by giving them weekly demos on our findings and
improvements, allowing the client to see all functionalities of our design and provide us with
feedback of their own.

5.7 USER TESTING
Security is an important aspect of our project, as we don't want students and professors to have
their data compromised, nor do we want unexpected people to hack into our project and mess with
our software. To make sure only ISU professors and students can access our application, we are
using encryption and authentication features handled by Microsoft OAuth and ISU SSO. This also
allows us to protect user information by the security measures built into Google and Microsoft. To
prevent traffic from being mishandled, we are using HTTPS to encrypt the traffic between the users
and our server.

To secure the server, we use SSH with public key authentication, implement multi-factor
authentication for password access, and configure a firewall that only permits traffic through SSH,
HTTP, and HTTPS ports. NGINX is employed as a reverse proxy for the PrairieLearn server,
enabling HTTPS and encrypting client-server communication. Furthermore, all HTTP traffic is
redirected to HTTPS to ensure encryption across the board.

5.9 RESULTS

By going through all of the questions implemented by the previous team and checking to see if each
question is randomizable and autogradable, we encountered quite a few problems with a bad user
interface and/or missing features that make the problems confusing. For example, Figure 4 below
shows a question that was created by the previous team. For this question, there was no
randomization or autograding present. This problem only accepted short answer responses from
students, which required the problem to be manually graded, which goes against our design ideals.
So we improved this problem by switching from short answer responses to multiple choice
questions, as shown in Figure 5. By having students select from different choices, this allowed us to
autograde the problem since we were now easily able to assign correct answers. Due to the nature of
the problem, we weren’t able to make this problem randomizable, but our advisor was okay with
this problem just being autograded.

34

Figure 6: Old problem that has no autograding or randomization

Figure 7: Improved problem that uses autograding

35

6 Implementation
The final implementation of our project contains a series of 12 homework assignments that run on
the PrairieLearn framework, where we have a production server that hosts our project so that
students, professors, and TAs can access our project with a secured login via Microsoft OAuth. Most
questions within our project are similar to those used in previous CPRE 2880 courses, but we
expanded off them to make sure that they are randomizable (to allow students to get a lot of
practice out of each question) and autograded (to give students instant feedback on mistakes
made).

The final implementation of our project mostly matches our final design. We were able to fully
implement HWs 1-9 with each question being randomizable and autogradable. However, we weren’t
able to finish implementing the rest of the HWs, HWs 10-12 due to a lack of time and not being able
to understand how to use the QEMU ARM autograder to autograde questions in HW 12.

6.1 DESIGN ANALYSIS
Our implemented design works very well. As mentioned before, all questions for HWs 1-9 have
been thoroughly worked on and tested to make sure that they have a good chunk of randomizable
parameters, are autograded with correct and sufficient feedback, and have a good formatting. This
design makes it easy for students to learn and engage with these homework problems. We know
that our implemented design works well because we have met with our advisor/client every week to
give demos on changes that we made and request feedback on if our advisor/client liked what we
did or if they wanted us to go a different direction. By having this constant communication with our
advisor/client, we have been able to align our final design implementation with the needs of our
users and advisor/client.

The main thing that doesn’t work so well with our final design is the last three homeworks, HWs
9-12, not working at all. These homeworks are in a state where students could see a question and
interact with it, but the question won’t be autograded nor will they be able to randomize the
question. This design flaw occurred mostly due to time constraints and having to rework or finish
implementing HWs 1-9, but it also had to do with not being able to understand how to use the
QEMU ARM autograder for autograding the questions in HW 12. To have these homeworks in a
better state, we could’ve dedicated more time each week to the project to be able to accomplish
more and not have time be as much of an issue with our final implementation. We also could’ve
reached out to members from the previous team to better understand the QEMU ARM autograder
instead of trying to just learn about it from their documentation that just made things more
confusing.

7 Ethics and Professional Responsibility
We want to make our project an effective teaching tool for students in CPRE 2880 to use as an
additional resource. With that, we need to pick a correct difficulty level that won’t be too easy nor
too hard for students. If the homeworks are leaning more on the easy side or hard side, then
students will have a tough time really learning and grasping the material that our project aims to
better teach and reinforce. We aim to strike the right balance in the difficulty level of the questions
and exercises, ensuring that they challenge students appropriately without overwhelming them. By
carefully calibrating the complexity of our content, we hope to reinforce their understanding of
course concepts while building their confidence in problem-solving.

36

One challenge that we face with our project is students being dishonest and cheating on
homeworks. Not only will this cause students to get better grades than they deserve, but it will also
cause those students who cheat to not actually learn the material within the homeworks. This
undermines the purpose of our project, which is to provide a meaningful learning tool to help
students better understand complex topics in CPRE 2880.

7.1​ AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of
Responsibility

Definition Relevant Item from
IEEE Code of Ethics

Team Interaction

Work Competency Perform work of high
quality, integrity,
timeliness, and
professional
competence.

To maintain and
improve our technical
competence and to
undertake
technological tasks for
others only if
qualified by training
or experience, or after
full disclosure of
pertinent limitations.

Our team has worked
to provide high
quality work that is up
to the standards of
our client and the
intended end users.

Financial
Responsibility

Deliver products and
services of realizable
value and at
reasonable costs.

To avoid real or
perceived conflicts of
interest whenever
possible, and to
disclose them to
affected parties when
they do exist.

Our project will give
students the ability to
access our services
free of charge.

Communication
Honesty

Report work
truthfully, without
deception, and
understandable to
stakeholders.

To seek, accept, and
offer honest criticism
of technical work, to
acknowledge and
correct errors, to be
honest and realistic in
stating claims or
estimates based on
available data, and to
credit properly the
contributions of
others.

We have a weekly
report and meeting
with our advisor to
monitor our progress
and truthfully report
our work.

Health, Safety,
Well-Being

Minimize risks to
safety, health, and
well-being of
stakeholders.

To hold paramount
the safety, health, and
welfare of the public,
to strive to comply
with ethical design
and sustainable
development
practices, to protect
the privacy of others,

As our project doesn’t
deal with physical
health, safety, or
well-being, the main
benefit would be to
help with the
emotional and mental
health, saftey, and
well-being of our

37

and to disclose
promptly factors that
might endanger the
public or the
environment.

advisor and intended
users.

Property Ownership Respect property,
ideas, and
information of clients
and others.

To seek, accept, and
offer honest criticism
of technical work, to
acknowledge and
correct errors, to be
honest and realistic in
stating claims or
estimates based on
available data, and to
credit properly the
contributions of
others.

We utilize Git and
have logs of everyone’s
commits and changes
so they are given
credit for the work
they’ve done. As a
team we also
recognize the work of
the groups that have
come before us.

Sustainability Protect environment
and natural resources
locally
and globally.

To hold paramount
the safety, health, and
welfare of the public,
to strive to comply
with ethical design
and sustainable
development
practices, to protect
the privacy of others,
and to disclose
promptly factors that
might endanger the
public or the
environment.

Our project would be
hosted all online,
making it unnecessary
for students to print
out their homeworks
moving forward.

Social Responsibility Produce products and
services that benefit
society
and communities.

To treat all persons
fairly and with
respect, and to not
engage in
discrimination based
on characteristics
such as race, religion,
gender, disability, age,
national origin, sexual
orientation, gender
identity, or gender
expression.

Our product will
benefit our end users
by providing less
stress in grading and
more practice
opportunities for
students, helping
them feel better
prepared for future
assignments, quizzes,
and exams.

Table 3: Areas of Responsibility

One ethical area that we are doing well in is how we approach the financial responsibility of our
users. Our project is entirely free for CPRE 2880 students, ensuring that they have access to all of

38

the tools and resources they need to succeed without incurring any additional financial burden.
Professors also benefit from being able to host their courses for free using the PrairieLearn
platform. Additionally, custom emulators and tools can be integrated into our project without
requiring any additional expenses. Any future tools or resources incorporated into our project can
be done at no cost as well. The only potential costs involved with our project are related to labor
and server maintenance, which are minimal compared to the overall value our project provides.

One ethical area that we aren’t doing so well in is in our work competence. While our project is high
quality and professional in terms of formatting, functionality, and visual presentation, and also
maintains the integrity of the course and its homeworks, we have fallen short in meeting our
original timeline and goal. Our initial goal was to have a full beta version of the project completed
and ready for students to test a couple of weeks into the semester and then spend the rest of the
semester tweaking our project. Where we ended up with our work was having homeworks 1-9
completed and ready with the other three incomplete. This was due to a number of difficulties
faced inside of completing homeworks 1-9. At a certain point in the semester, we had to switch over
to documentation of our project and setting up the next team to work on this project so that took
away from our ability to finish the homeworks.

7.2 FOUR PRINCIPLES

 Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Design helps reduce stress
for learning complex 2880
topics

Our project aims to help
students improve in 2880
and won’t negatively impact
their learning/grade

Allows students to work
and get extra practice
(with feedback) without
needing TA or professor
help (relieving burdens on
graders)

Each student will get
randomized versions
of the question,
showing no favoritism
toward any student in
the class

Global,
cultural, and
social

Helps CPRE 2880
students learn course
content and achieve high
homework, quiz, and
exam scores

Students should have a
better learning experience
than with previous teaching
methods

Design can be modified at
any time to follow or
include the different
beliefs of professors and
students

All students will have
equal access to the
platform so no student
has advantage over
another.

Environment
al

Homeworks will be online
and autogradable instead
of having students use
paper for homeworks,
quizzes, or exams

Since our project is hosted
on ISU servers, because ISU
sources a majority of its
energy from renewable
resources, it causes less harm
to the environment

Helps preserve the forests
and reduce the burden of
paper demand from trees

With preservation of
trees and using
renewable resources to
run servers, we treat
all aspects of nature
equally better

Economic PrairieLearn is free for
2880 students to access

Our design will not increase
students’ cost of tuition since
PrairieLearn is free to use

Our design and
documentation can serve
as a template for other
courses to make their own
similar instances at no
cost to them

Since prairielearn is
free, no specific
groups of people will
have to spend money
on it to access it

Table 4: Four principles and broader context relations

39

One broader context-principle pair that is important to our project is the principle of beneficence
within the public health, safety, and welfare context. The goal of our design is to reduce the stress
that CPRE 2880 students experience when learning difficult concepts in CPRE 2880. Stress can
negatively impact a student’s ability to focus and retain information, so our project aims to address
this issue by creating online, autogradable homeworks that provides instant feedback. This
approach gives students more learning opportunities by allowing them to practice concepts as many
times as they need. To ensure this benefit for our users, our team prioritizes a user-centered design
for our project. This ensures our project truly supports student success and reduces stress,
contributing to their overall learning in CPRE 2880.

One broader context-principle pair where our project is lacking is in addressing the principle of
respect for autonomy within the economic context. Currently, the documentation that we have
covers most of the development side of making our project, but there is no documentation for how
TAs and/or professors can use our project for areas that don’t involve development, such as
manually grading homeworks and providing further feedback. This lack of comprehensive
documentation limits the autonomy of professors and TAs, as they may struggle to fully utilize the
platform without additional guidance. We would push future teams to create well-rounded and
detailed documentation that addresses the operational aspects of our project. This can be in the
form of detailed step-by-step guides and further video tutorials that professors and TA’s can follow
along with.

7.3 VIRTUES

The first virtue that is important to the team is determination/tenacity because without it, it would
make it hard to make much progress on our project. When we are continuing on a project that a
previous team has worked on, we were thrown right into the deep end of the project. The whole
team had to spend a lot of time learning how to use the PrairieLearn framework, as well as learning
what the previous team all accomplished. Because the team is determined to make a project to help
CPRE 2880 students, professors, and TAs, we stuck with the uncomfortableness and persevered
through the challenges. This determination allowed us to push past the initial hurdles, such as
understanding the complexities of the framework and deciphering the previous team's work.
Instead of being discouraged by the steep learning curve, we used it as an opportunity to grow and
collaborate effectively.

The second virtue that is important to the team is having compassion for ourselves and for our
users. By being compassionate and showing kindness and patience to one another, our team will
work better and problem solve more effectively. Being compassionate also allows us to create a
productive working environment for the entire team, where every team member feels valued and
supported. Compassion also makes us think in the perspective of CPRE 2880 students to better
understand their needs, allowing us to develop and modify questions that make the most sense for
them and will actually be helpful.

The third virtue that is important to the team is creativity. Because of the nature of our project, we
have to come up with questions ourselves that are engaging and interesting for the students. We
need to have creativity in order to come up with unique questions that really test a student's
knowledge and understanding. We have already used creativity to fix questions developed by the
previous team, where these fixes improve the questions and make more sense to the students.

40

The fourth virtue that is important to the team is cooperation because it is the foundation of
successful teamwork. Cooperation ensures that all team members can work together most
efficiently, leveraging each other’s strengths and supporting each other’s weaknesses. Throughout
our project, we have been using cooperation to share knowledge of different areas within
PrairieLearn. Whenever one team member encounters a problem, we rely on open communication
to come up with a solution in a timely manner. To make the progress that we did in finishing the
first 9 homeworks,, we divided and worked on separate homeworks based on our individual
strengths and areas of expertise. This approach allowed us to make significant progress while
ensuring that each homework assignment was developed with care and attention to detail. By
relying on cooperation, we have been able to overcome challenges more efficiently and ensure that
our project meets the needs of CPRE 2880 students, professors, and TAs.

Caden Otis
One virtue that I have demonstrated the best so far in my senior design work is
determination/tenacity. Determination is important to me because without determination, it would
be difficult for me to overcome difficulties. I have demonstrated determination by always thinking
about the positive effects our completed project will have on our users, which keeps me focused and
motivated when encountering any obstacles along the way. When I first started working with
PrairieLearn, I knew nothing about it. I had to rely heavily on my determination to figure out how it
worked. After reading through lots of documentation, going through already developed questions,
experimenting with my own questions, and troubleshooting, I finally understood the inner
workings of PrairieLearn. My determination helped me push through the frustration and
uncertainty of using a completely new platform, ultimately allowing me to create meaningful and
effective questions for CPRE 2880 students

One virtue that is important to me that I haven’t demonstrated well is creativity. Creativity is
important to me because it allows teams to develop innovative solutions and approach problems
from fresh perspectives. It enables us to think outside the box and come up with unique ideas that
can add value to our project and make it stand out from similar platforms. Inside of the aspects of
the project that I worked on, I feel like I was able to design and develop engaging and innovative
questions that enhance the learning experience for CPRE 2880 students, even if it wasn’t necessarily
displaying creativity. Looking back, I would’ve liked to display my creativity more in my aim to
bring creative solutions to any technical or design challenges that we face, ensuring that our project
is not only functional but also impactful and user-friendly for our users.

Joey Krejchi
A virtue that I have demonstrated is commitment to quality. This is a virtue from Pritchard’s list in
lecture, and it is something I’ve strived to practice throughout my life. It is important for us to
prioritize quality in our work so that we create things that exceed expectations and stand the test of
time. When you focus on making a quality product, that extra time you put towards quality pays
back when you create something great and lasting. I have demonstrated this virtue as Quality
Assurance manager for our team. I make sure that our application meets the expectations of our
client and that we are making something we can be proud of.

One virtue that I could’ve put more focus on is that of optimism. It seemed like there were big
expectations for our project, and there were tough problems I wasn’t sure if we could solve. I think
optimism is important because without it, you will struggle to find enjoyment in what you are

41

doing. Looking back, I think I could’ve found optimism in our project by appreciating what we have
done and accepting that we did the best we could. I think some more optimism on my end would
have a positive impact on the work I do in future projects.

Devin Alamsya
One virtue that I demonstrated is creativity. Creativity is important to me because working with a
creative mindset allows me to think outside the box and solve problems in new ways. We can
deliver project milestones that are innovative and engaging, not the same things as before. A way
that I have demonstrated this is transforming short answer questions into questions with a new
format, completely randomizable, and completely autogradable. This was able to happen because I
viewed the problem with a creative mindset.

One virtue that I should’ve focused more on is having clear and thorough documentation. Having
clear and thorough documentation is important to me because it helps me keep track of all I’ve
done, but it also helps the team, future senior design teams, and users to know what changes were
made, how to make them, the thought process behind them, and the implications of any changes.
Although I’ve made progress on the project, documentation (documents, videos, slideshows)
should be made for the progress accomplished. To demonstrate this virtue more towards the end of
the project, I created documentation for changes to help external parties understand the changes
made.

Justin Cano
One virtue I demonstrated during my work is perseverance. Perseverance is important to me
because it shows my dedication to overcoming obstacles, even when the obstacle is complex or time
consuming. I’ve demonstrated perseverance while addressing the issue of setting up OpenID
Connect (OIDC) to allow ISU students to use Single Sign On (SSO) with PrairieLearn. Since
PrairieLearn does not by default allow you to set up OIDC SSO, you can modify the source code of
it to allow it. However, there is almost next to zero documentation out there explaining how to do
it, coupled with the fact the ISU just recently swapped from using OKTA to Microsoft for SSO made
last year's teams documentation less than useful. However despite this, I worked through this
challenge by dedicating myself to this obstacle until I overcame it.

An important virtue that I struggled to demonstrate is communication. Communicating is essential
for projects, as it helps ensure that others know what tasks you’re working on and helps keep the
team on schedule. I found that I often struggled to let the team know what I was working on as my
part of the project was very much so different from their aspects of the project. To help improve my
communication skills moving forward in every other project, I will work to share my progress
updates more often with my future teams, even if it's a small achievement or issue.

Rachel Druce-Hoffman
I feel that I have embodied the virtue of perseverance this semester. This virtue is an important skill
for everyone to have in order to overcome adversity in life, or even to learn and move on from
failures. As is to be expected with a capstone project, we have faced challenges and technology that
we have not worked with before. It has been intimidating, especially when we are not sure if our
vision for a homework question is possible to implement. Personally, I have not worked extensively
with Python before, and so I have had to practice resilience with learning this language. It is
frustrating knowing I could easily solve a problem in a different coding language, but having to

42

struggle to translate my thoughts into new syntax. This hardship has taught me a lot, and my ability
to put the time in on these problems has paid off multiple times.

A virtue that I had not really demonstrated until the end of the semester was maintaining good
documentation habits. There is very little point to learning and engineering solutions unless you
document your work to teach others what you learned. This semester, I have been more caught up
in trying to meet our team’s beta test goal to do much documenting as I go. I regret this, as I want to
help future developers save time and understand how to use PrairieLearn better. I have noticed that
I tend to get too focused on the problem at hand to document the steps I take in the moment, and I
will work on this. Towards the end of the semester I got much better at documenting my work and
making clear documentation of beta test scripts and canvas integration.

8 Conclusions

8.1 SUMMARY OF PROGRESS

This project was started under the vision of improving the course CPRE 2880 by transitioning
homework assignments to the PrairieLearn platform. Our primary goal was to help minimize the
grading time for instructors without harming the students' success in the course. We did this by
using the modularity of PrairieLearn to transform the previous homework assignments into
randomized and fully autogradable questions. So far, the first 9 homework assignments are fully
functional and are ready for beta testing in the Fall of 2025, while the development of the remaining
assignments are still ongoing. We have also spent a good chunk of time developing clear and
concise documentation for future teams so that they can pick up the project really well and hit the
ground running instead of taking a ton of time to figure things out.

As far as our testing, we’ve tested the first 9 homeworks in house thus far (tested by our own team)
and have conducted a test with the professor to get their feedback. We were hoping to get a beta
test of some sort done this semester, but that proved to be difficult due to our progress and the lack
of response in our inquiry to get a beta test done.

We fell short in our goals of having all the homeworks completed and tested by students currently
in CPRE 2880. This was mainly due to a complexity in the problems that we didn’t realize was there
which led to increased work time on them. As far as not getting the beta test out, we just weren’t
met with a response from the professor until it was too late to get a beta test pushed out to
students. Although our plans for a beta test didn’t pan out, during the Spring 2025 semester, we had
Dr. Zambreno, Dr. Rover, and her TAs use and experiment with the final state of our project as an
alpha test. Some of the feedback that we got related to the usefulness of the autograder and making
it quick and easy for students to get grades without the need for TAs or professors to step in. We
also got good feedback on the overall layout of homeworks and how questions were formatted,
especially with C and assembly programming questions, having a simple and intuitive design that
students can easily grasp. However, we also got feedback on factors that could be improved, such as
allowing for incomplete submissions and making conceptual-type questions more unique than a
typical Canvas format.

43

8.2 VALUE PROVIDED

We believe that we have created a product that meets the needs of our users. Through the first 9
homeworks our product gives students the ability to practice questions that can help them study
and understand the material. These questions also give them instant feedback that allows them to
learn from mistakes or successes in the moment.

For the professor’s and TA’s, it meets their needs by being a product that has full randomizable and
autogradable capabilities. That means that question creation and grading responsibilities are no
longer something that they need to spend time with. Freeing them up to help students the best
they can so they can give lots of in depth feedback to students that need the help instead of being
stuck grading a ton of assignments.

From the feedback of our alpha test, it was made clear that the autograder would save a lot of time
from professors and TAs having to manually grade student submissions. It also provided a quick
way for students to get small feedback. The feedback that we received also made it clear that harder
topics in CPRE 2880 had very unique and engaging questions to help students’ overall learning with
the material. The results of our alpha test showed that we were able to meet our users’ needs of
having an application that could improve overall student learning while also allowing professors
and TAs to focus less on grading and spend more time helping students.

8.3 NEXT STEPS

The next steps that future teams working on this project can take are finishing the last three
remaining homeworks, doing a full beta test, and finishing out all of the thorough documentation
of the project. The first 9 homeworks shouldn’t need to be touched but the last three will need to be
completed, tested, and revised. With that comes the full beta test that they can give to students to
test the full functionality of the projects found in all homeworks, and then they would need to
document all the new technology and processes found in the final three homeworks they complete.
It would also be good for them to document results of a beta test. Some other new projects could be
creating a homework platform like the one we’ve created for CPRE 2880 for other classes. Using our
documentation, I believe that this is something that another project could potentially accomplish
quicker than if they tried it without using our documentation. It would set them up well to set
everything up and make great strides of progress in a potential new project.

9 References
[1] LinkedIn Learning: Online Training Courses & Skill Building,

https://www.linkedin.com/learning/ (accessed Dec. 6, 2024).
[2] Quizlet, https://quizlet.com/ (accessed Dec. 6, 2024).
[3] zyBooks, https://www.zybooks.com/ (accessed Dec. 6, 2024).
[4] Coursera, https://www.coursera.org/ (accessed Dec. 6, 2024).
[5] “PrairieLearn,” ReadTheDocs.io. https://prairielearn.readthedocs.io/en/latest/ (accessed

Dec. 05, 2024).

https://prairielearn.readthedocs.io/en/latest/

44

10 Appendices

APPENDIX 1 – OPERATION MANUAL
●​ https://git.ece.iastate.edu/class/ece-prairielearn-documentation/-/tree/main?ref_type=hea

ds

o​ Documentation Repository

●​ https://docs.google.com/document/d/1_U9zlj2IjJdGGZJoiNjF5MABmVICrgQY/edit#headin
g=h.e6q0nau3hzgf

o​ Set-up documentation

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
●​ https://git.ece.iastate.edu/sd/sdmay24-33

o​ This is the repository for the previous team in this legacy project. Our project has
built off of this previous project.

APPENDIX 3 – CODE

●​ https://git.ece.iastate.edu/sd/sdmay25-33

https://git.ece.iastate.edu/class/ece-prairielearn-documentation/-/tree/main?ref_type=heads
https://git.ece.iastate.edu/class/ece-prairielearn-documentation/-/tree/main?ref_type=heads
https://docs.google.com/document/d/1_U9zlj2IjJdGGZJoiNjF5MABmVICrgQY/edit#heading=h.e6q0nau3hzgf
https://docs.google.com/document/d/1_U9zlj2IjJdGGZJoiNjF5MABmVICrgQY/edit#heading=h.e6q0nau3hzgf
https://git.ece.iastate.edu/sd/sdmay24-33
https://git.ece.iastate.edu/sd/sdmay25-33

45

APPENDIX 4 – TEAM CONTRACT

Team Members

1.​ CADEN OTIS
2.​ RACHEL DRUCE-HOFFMAN
3.​ JUSTIN CANO
4.​ DEVIN ALAMSYA
5.​ JOEY KREJCHI

Required Skill Sets for Your Project

●​ Embedded Systems Programming
●​ Knowledge of various programming languages.

○​ C
○​ Python
○​ JavaScript
○​ HTML

●​ Security techniques to ensure our production server is secured.

Skill Sets covered by the Team

●​ Embedded Systems Programming
○​ Every member

●​ Programming languages
○​ Every member

●​ Security
○​ Rachel Druce-Hoffman
○​ Justin Cano
○​ Joey Krejchi

Project Management Style Adopted by the team

●​ Hybrid of Waterfall and Agile

Individual Project Management Roles

Project Manager (Caden Otis): Coordinate with the team to develop clear project goals and metrics.
Facilitate the progress made on tasks every week to make sure the team is on track with deadlines.

Technical Lead (Justin Cano): Sets up the production server for our project and ensures it is
hardened and secured. Work with ISU IT, ETG and ASW for various aspects of the project.

Notetaker (Rachel D-H): Takes notes during advisor meetings

Quality Assurance (Joey Krejchi): Ensures that the product is meeting the expectations of our
client-advisor Dr. Jones. Attentive to details that are crucial to a successful project.

Consultant (Devin Alamsya): Work to meet project goals and provide high quality work, be a
sounding board for ideas, and be there to assist in any problems that arise within the project.

46

Team Contract

Team Members:

1) Caden Otis 2) Rachel Druce-Hoffman

3) Justin Cano 4) Joey Krejchi

5) Devin Alamsya

Team Procedures

1)​ Day, time, and location (face-to-face or virtual) for regular team meetings:
a)​ We will have in person team meetings on Wednesday at 1pm and virtual team

meetings as needed on Friday at 12pm via discord.
2)​ Preferred method of communication updates, reminders, issues, and scheduling (e.g.,

e-mail, phone, app, face-to-face):
a)​ Discord and SMS messaging

3)​ Decision-making policy (e.g., consensus, majority vote):
a)​ Majority vote

4)​ Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

a)​ Rachel Druce-Hoffman is our official notetaker and her notes are stored in a google
drive.

5)​

Participation Expectations

1.​ Expected individual attendance, punctuality, and participation at all team meetings:
a.​ All members will attend meetings on time, unless there is an acceptable reason for

their absence. Members will notify the team ahead of time if they are unable to
attend. Finally, each member will also be attentive and participate in each meeting.

2.​ Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
a.​ Each team member will contribute on team assignments to ensure we complete

our work before its deadline.
3.​ Expected level of communication with other team members:

a.​ Members should view the team Discord at least once a day so they’re aware of
progress being made by fellow team members and what tasks are being worked on.

4.​ Expected level of commitment to team decisions and tasks:
a.​ Each member should also contribute about an equal amount of work per task to

ensure no one member is doing significantly more work.
5.​

Leadership

1.​ Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

47

a.​ Each team member will share leadership responsibilities, as we don’t want one
specific person to be the team leader.

2.​ Strategies for supporting and guiding the work of all team members:
a.​ We will maintain a judgement free working environment and always be open to

helping one another.
b.​ We will also have a standup during our weekly meetings to check the progress of

each team member where they can discuss any issues or breakthroughs they have
found.

3.​ Strategies for recognizing the contributions of all team members:
a.​ During our weekly team meetings, we will have a standup so each member can

discuss what they did the previous week so we can recognize what everyone has
done.

Collaboration and Inclusion

1.​ Describe the skills, expertise, and unique perspectives each team member brings to the
team.

a.​ Our team’s majors are as follows:
i.​ Caden Otis: Electrical Engineering

ii.​ Rachel Druce-Hoffman: Cyber Security Engineering
iii.​ Justin Cano: Cyber Security Engineering
iv.​ Joey Krejchi: Cyber Security Engineering
v.​ Devin Alamsya: Software Engineering

b.​ Each team member has taken CprE 2880 so we all have knowledge of the course
content we’ll be using.

c.​ Each team member also has a variety of coding knowledge, including C and
Python, which makes up the majority of our project.

d.​ Rachel, Justin, and Joey all have knowledge of security practices from their Cyber
Security Engineering coursework.

2.​ Strategies for encouraging and support contributions and ideas from all team members:
a.​ We will make sure that each member’s thoughts and ideas have been heard in a

discussion so we can promote equal contribution.
3.​ Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a

team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)

a.​ We will be upfront with each other and foster a constructive environment. This
way members can discuss potential issues and resolve them before they occur.

Goal-Setting, Planning, and Execution

1.​ Team goals for this semester:
a.​ Meet all class and advisor deadlines on time.
b.​ Go above and beyond for our weekly goals.
c.​ Have a cohesive final project that we are happy and proud of.
d.​ Have a product that can be beta tested by the beginning of next year.

2.​ Strategies for planning and assigning individual and team work:

48

a.​ We will focus on being fair with each member's workload while also playing to
each member's individual strengths.

3.​ Strategies for keeping on task:
a.​ Incorporate breaks into our work time and set aside any distractions.

Consequences for Not Adhering to Team Contract

1.​ How will you handle infractions of any of the obligations of this team contract?
a.​ We will have a three-strikes-and-you're-out policy for handling infractions. For the

first two infractions, the team will discuss the infraction and determine the best
case of action. If the problem persists after the first two breaches, we will then
bring it up to Dr. Shannon and Dr. Fila.

2.​ What will your team do if the infractions continue?
a.​ We’ll contact the course instructors and advisor to get advice on how to proceed

with the infracting student.

a.​ I participated in formulating the standards, roles, and procedures as stated in this contract.
b.​ I understand that I am obligated to abide by these terms and conditions.
c.​ I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

NAME ​ Joey Krejchi ​ ​ ​ ​ ​ DATE ​ 04/30/25

NAME ​ Caden Otis​ ​ ​ ​ ​ DATE ​ 04/30/25

NAME ​ Justin Cano ​ ​ ​ ​ ​ DATE ​ 04/30/25

NAME ​ Rachel Druce-Hoffman ​ ​ ​ ​ DATE ​ 04/30/25

NAME ​ Devin Alamsya ​ ​ ​ ​ ​ DATE ​ 04/30/25

	Executive Summary
	Learning Summary
	1.​Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2.​Requirements, Constraints, And Standards
	2.1 REQUIREMENTS & CONSTRAINTS
	2.2 ENGINEERING STANDARDS
	2.2.1 IMPORTANCE
	2.2.2 STANDARDS AND DESCRIPTIONS
	2.2.3 RELEVANCE
	2.2.4 ADDITIONAL STANDARDS
	2.2.5 Modifications and Incorporation

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3​FINAL DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	4.4 TECHNOLOGY CONSIDERATIONS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3​INTEGRATION TESTING
	5.4​SYSTEM TESTING
	5.5​REGRESSION TESTING
	5.6​ACCEPTANCE TESTING
	5.7 USER TESTING
	5.9 RESULTS

	6 Implementation
	6.1 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1​AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.2 FOUR PRINCIPLES
	7.3 VIRTUES

	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 References
	10 Appendices
	APPENDIX 1 – OPERATION MANUAL
	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 3 – CODE
	APPENDIX 4 – TEAM CONTRACT

